Let E1 , E2 and E3 be the events that the person is a doctor, teacher and engineer respectively and A be the event that person dies before the age of 58 years.
\(P(E_1)=\frac{4000}{4000+8000+12000}=\frac{4000}{24000}=\frac{1}{6}\)
Similarly,
\(P(E_2)=\frac{1}{3},P(E_3)=\frac{1}{2}\)
and P(A/E1) = 0.01, P(A/E2) = 0.03 and P(A/E3) = 0.05
By Bayes' theorem,
\(P(\frac{E_1}{A})=\frac{P(E_1).P(A/E_1)}{P(E_1).P(\frac{A}{E_1})+P(E_2).P(\frac{A}{E_2})+P(E_3).P(\frac{A}{E_3})}\)
