The correct option (a) [(4√2)/3a]
Explanation:
y = a sin3 α ⇒ (dy/dα) = 3a sin2 α ∙ cos α.
x = a cos3 α ⇒ (dx/dα) = 3a cos2 α (– sin α)
∴ (dy/dx) = – tan α
∴ [(d2y)/(dx2)] = – sec2 α ∙ (dα/dx)
∴ [(d2y)/(dx2)] = (– sec2 α) ∙ [1/{3a (– sin α) ∙ cos2 α}]
∴ [(d2y)/(dx2)] = (1/3a) ∙ [1/{sin α ∙ cos4 α}]
∴ [(d2y)/(dx2)]|α=(π/4) = (1/3a) ∙ [1/{sin (π/4) ∙ cos4 (π/4)}]
= (1/3a) ∙ [1/{(1/√2) (1/√2)4}] = [(4√2)/3a]