(1) 601.5
\(y = n. \left( \frac{\lambda D} d\right)\)
For \(8^\text{th}\) fringe
\(y = 8 \frac{\lambda D} d\)
\(y_\max = 8 \frac{\lambda D} {d_\min}\)
\(y_\min = 8 \frac{\lambda D} {d_\max}\)
\(y_\max - y_\min = 8 \lambda D \left[ \frac 1{d_{\min}} - \frac 1{d_{\max}}\right]\)
\(\lambda = 6000Å\)
\(\mathrm{D}=1 \mathrm{~m} \)
\(\mathrm{d}_{\text {max }}=0.34 \mathrm{~mm} \)
\( \mathrm{d}_{\text {min}}=0.76 \mathrm{~mm}\)
\(y_{\max}-y_{\min}=8 \times 6000 \times 10^{-10} \times 1\left[\frac{1}{0.76 \times 10^{-3}}-\frac{1}{0.84 \times 10^{-3}}\right]\)
\(=8 \times 6 \times 10^{-4} \times\left[\frac{0.08}{0.76 \times 0.84}\right]\)
\(=601.5 \mu \mathrm{m} \)
(2) 24
\(y=n \cdot \frac{\lambda D}{d}\)
\(\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{n} . \frac{\lambda \cdot \mathrm{d}}{\mathrm{d}^2} \cdot \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}\)
\( \mathrm{d}=0.8+0.04 \sin \omega \mathrm{t} \)
\( \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}=0.04 \omega \cos \omega \mathrm{t}\)
For \(\mathrm{v} \rightarrow \max \Rightarrow \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max\)
For \(\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max\)
\(\cos \omega \mathrm{t}=1 \Rightarrow \sin \omega \mathrm{t}=0 \)
\(\Rightarrow\left(\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}\right)_{\max }=0.04\)
\(\Rightarrow \mathrm{d}=0.8 \mathrm{~mm} \)
\(\mathrm{v}_{\max }=\frac{8 \times 6000 \times 10^{-10} \times 1 \times 0.04 \times 0.08}{0.8 \times 0.8 \times 10^{-6} \times 10^{-3}}=24 \mu \mathrm{m} / \mathrm{s}\)