Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
5.4k views
in Physics by (57.1k points)
closed by

In a Young's double slit experiment, each of the two slits A and B, as shown in the figure, are oscillating about their fixed center and with a mean separation of \(0.8 \mathrm{~mm}\). The distance between the slits at time \(t\) is given by \(d=(0.8+0.04 \sin \omega t) \mathrm{mm}\), where \(\omega=0.08 \mathrm{rad} \mathrm{s}^{-1}\). The distance of the screen from the slits is \(1 \mathrm{~m}\) and the wavelength of the light used to illuminate the slits is \(6000 Å\). The interference pattern on the screen changes with time, while the central bright fringe (zeroth fringe) remains fixed at point O.

(1) The \(8^{\text{th}}\) bright fringe above the point O oscillates with time between two extreme positions. The separation between these two extreme positions, in micrometer (\(\mu m\)), is ______.

(2) The maximum speed in \(\mu \mathrm{m} / \mathrm{s}\) at which the \(8^{\text {th }}\) bright fringe will move is ______.

1 Answer

+1 vote
by (41.3k points)
selected by
 
Best answer

(1) 601.5

\(y = n. \left( \frac{\lambda D} d\right)\)

For \(8^\text{th}\) fringe

\(y = 8 \frac{\lambda D} d\)

\(y_\max = 8 \frac{\lambda D} {d_\min}\)

\(y_\min = 8 \frac{\lambda D} {d_\max}\)

\(y_\max - y_\min = 8 \lambda D \left[ \frac 1{d_{\min}} - \frac 1{d_{\max}}\right]\)

\(\lambda = 6000Å\)

\(\mathrm{D}=1 \mathrm{~m} \)

\(\mathrm{d}_{\text {max }}=0.34 \mathrm{~mm} \)

\( \mathrm{d}_{\text {min}}=0.76 \mathrm{~mm}\)

\(y_{\max}-y_{\min}=8 \times 6000 \times 10^{-10} \times 1\left[\frac{1}{0.76 \times 10^{-3}}-\frac{1}{0.84 \times 10^{-3}}\right]\)

\(=8 \times 6 \times 10^{-4} \times\left[\frac{0.08}{0.76 \times 0.84}\right]\)

\(=601.5 \mu \mathrm{m} \)

(2) 24

\(y=n \cdot \frac{\lambda D}{d}\)

\(\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{n} . \frac{\lambda \cdot \mathrm{d}}{\mathrm{d}^2} \cdot \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}\)

\( \mathrm{d}=0.8+0.04 \sin \omega \mathrm{t} \)

\( \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}=0.04 \omega \cos \omega \mathrm{t}\)

For \(\mathrm{v} \rightarrow \max \Rightarrow \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max\)

For \(\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max\)

\(\cos \omega \mathrm{t}=1 \Rightarrow \sin \omega \mathrm{t}=0 \)

\(\Rightarrow\left(\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}\right)_{\max }=0.04\)

\(\Rightarrow \mathrm{d}=0.8 \mathrm{~mm} \)

\(\mathrm{v}_{\max }=\frac{8 \times 6000 \times 10^{-10} \times 1 \times 0.04 \times 0.08}{0.8 \times 0.8 \times 10^{-6} \times 10^{-3}}=24 \mu \mathrm{m} / \mathrm{s}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...