Correct option is (B) \(q^{2} /\left(32 \pi \varepsilon_{0} R^{3} m\right)\)
As the hoop mass is not given so it must not move or else its inertia must have some effect.

Here \(r=2 R \cos \phi\)
Also \(\theta=2 \phi\)
\(\Rightarrow \theta=\frac{\phi}{2}\)
And \(\theta=\frac{x}{R}\)
If \(\theta\) is the small angular displacement of free charge, then \(F(\phi)=\frac{K q^{2}}{r^{2}}\)
So, restoring force towards mean position is \(F_{(R)}=\frac{K q^{2}}{r^{2}} \sin \phi\)
\(a_{R}=\frac{F_{(R)}}{m}=\frac{-K q^{2}}{m r^{2}} \cdot \sin \phi=\frac{-K q^{2} \cdot \sin \phi}{m 4 R^{2} \cos ^{2} \phi}\)
\(\Rightarrow a_{R}=-\frac{K q^{2}}{4 m R^{2} \cos ^{2}\left(\frac{\phi}{2}\right)} \cdot \sin \left(\frac{\theta}{2}\right) \approx \frac{-K q^{2}}{4 m R^{2}} \frac{1}{2} \cdot \frac{x}{R}=\omega^{2} \cdot x\)
So, \(\omega^{2}=\frac{q^{2}}{32 \pi \varepsilon_{0} m R^{3}}\)