Correct option is A,B,C
\(L=m v r=n h\), also \(\frac{m v^{2}}{r}=k r\)
\( m v^{2}=k r^{2} \)
\(m^{2} v^{2}=m k r^{2}\)
\(m v=\sqrt{m k r^{2}}\)
\(m v r=r^{2} \sqrt{m k}\)
\( n h=r^{2} \sqrt{m k}\)
\(
\frac{n h}{\sqrt{m k}}=r^{2}
\)
Option (A) is correct
Also, \(v^{2}=\frac{k r^{2}}{m}\)
\(=\frac{n h}{\sqrt{m k}} \cdot \frac{k}{m}\)
\(v^{2}=n h \sqrt{\frac{k}{m^{3}}}
\)
Option (B) is correct
Now,
\(\mathrm{T} . \mathrm{E}=E=\frac{1}{2} k r^{2}+\frac{1}{2} k r^{2}\)
\(E=k r^{2}\)
\(=k \frac{n h}{\sqrt{m k}}\)
\(=n h \sqrt{\frac{k}{m}}\)
Option (D) is incorrect
\(\Rightarrow \frac{L}{m r^{2}}=\frac{h \sqrt{m k}}{m n h}\)
\(\frac{L}{m r^{2}}=\sqrt{\frac{k}{m}}\)
Option (C) is correct