Correct answer: 3

Solid angle made by plane surfaces
\(\Omega=2 \times 2 \pi(1-\cos \theta)\)
\(\Rightarrow \Omega=4 \pi-4 \pi \cos \theta\)
So solid angle made by curved surface
\(=4 \pi-\Omega\)
\(=4 \pi-(4 \pi-4 \pi \cos \theta)\)
\(=4 \pi \cos \theta\)
\( \phi_{30^{\circ}}=\phi=\frac{4 \pi \cos 30^{\circ}}{4 \pi} \frac{\mathrm{Q}}{\epsilon_0}=\cos 30^{\circ} \frac{\mathrm{Q}}{\epsilon_0} \)
\( \phi_{60}=\frac{4 \pi \cos 60^{\circ}}{4 \pi} \frac{\mathrm{Q}}{\epsilon_0}=\cos 60^{\circ} \frac{\mathrm{Q}}{\epsilon_0} \)
\(\frac{\phi_{30}}{\phi_{60}}=\frac{\cos 30^{\circ}}{\cos 60^{\circ}}=\sqrt{3} \)
\( \frac{\phi}{\phi_{60}}=\sqrt{3}\)
\( \phi_{60}=\frac{\phi}{\sqrt{3}} \)
\(\Rightarrow \mathrm{n}=3\)