a. (1 + x)m (1 − x)n = (1 + mx + \(\frac{m(m -1)}{2}x^2\) +...) × (1 − nx + \(\frac{n(n -1)}{2}x^2 \) +...)
∴ Coefficient of x = m − n = 3 (given)
∴ Coefficient of x2 = \(\frac{n(n-1)}{2} - nm + \frac{m(m - 1)}{2} = -6\) (given)
⇒ n2 − n − 2mn + m2 − m = −12
⇒ (m − n)2 − (m + n) = −12
⇒ (3)2 − (m + n) = −12
⇒ m + n = 21
∴ Solving m − n = 3, m + n = 21, we get m = 12, n = 9