Correct option is (3) \(\frac{9}{4}\)
\(g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)\)
\(g^{\prime}(x) =3 \cdot \frac{1}{3} f^{\prime}\left(\frac{3}{3}\right)-f^{\prime}(3-x) \)
\(=f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x)\)
\(g^{\prime \prime}=\frac{f^{\prime \prime}(x)}{3}+f^{\prime \prime}(3-x)\)
\(\Rightarrow g^{\prime}(x)>0\)
\(f^{\prime}\left(\frac{3}{3}\right)-f^{\prime}(3-x)>0\)
\(f^{\prime}(x)>0 \Rightarrow f^{\prime}(x)\) is increasing