Answer is "3"
\(Z_1=\frac{1}{\sqrt{2}}(1+i), Z_2=1, Z_3=\frac{1}{\sqrt{2}}(1-i) \)
\(\left.\left|\overline{Z}_1 Z_2+\overline{Z}_2 Z_3+\overline{Z}_3 Z_1\right|=\frac{1}{\sqrt{2}}(1+i)+\frac{1}{\sqrt{2}}(1-i)+\frac{1}{2} \times 2 i \right\rvert\, \)
\(=|\sqrt{2}+i(1-\sqrt{2})| \)
\(=\sqrt{2+1+2-2 \sqrt{2}} \)
\(=\sqrt{5-2 \sqrt{2}} \)
\(\left|\overline{Z}_1 Z_2+\overline{Z}_2 Z_3+\overline{Z}_3 Z_1\right|^2=5-2 \sqrt{2}=\alpha+\beta \sqrt{2} \)
\(\alpha=5, \beta=-2\)