Correct option is (4) 29
\(Z_{1}=e^{-i \pi / 4}, Z_{2}=1, Z_{3}=e^{i \pi / 4}\)
\(\left|z_{1} \bar{z}_{2}+z_{2} \bar{z}_{3}+z_{3} \bar{z}_{1}\right|^{2}=\left|e^{-i \frac{\pi}{4}} \times 1+1 \times e^{-i \frac{\pi}{4}}+e^{i \frac{\pi}{4}} \times e^{i \frac{\pi}{4}}\right|^{2}\)
\(\left\lvert\, e^{-i \frac{\pi}{4}}+e^{-i \frac{\pi}{4}}+e^{\left.i \frac{\pi}{4}\right|^{2}}\right.\)
\(=\left|2 e^{-i \frac{\pi}{4}}+\mathrm{i}\right|^{2}=|\sqrt{2}-\sqrt{2} \mathrm{i}+\mathrm{i}|^{2}\)
\(=(\sqrt{2})^{2}+(1-\sqrt{2})^{2}=2+1+2-2 \sqrt{2}=5-2 \sqrt{2}\)
\(\alpha=5, \beta=-2\)
\(\Rightarrow \alpha^{2}+\beta^{2}=29\)