Correct option is (1) One-one but not onto
\(\mathrm{f}(\mathrm{x})=\frac{2^{2 \mathrm{x}}-1}{2^{2 \mathrm{x}}+1}\)
\(=1-\frac{2}{2^{2 x}+1}\)
\(f^{\prime}(x)=\frac{2}{\left(2^{2 x}+1\right)^{2}} \cdot 2 \cdot 2^{2 x} \cdot \ell n 2\) i.e always +v e
so \(\mathrm{f}(\mathrm{x})\) is \(\uparrow\) function
\(\therefore \mathrm{f}(-\infty)=-1\)
\(\mathrm{f}(\infty)=1\)
\(\therefore \mathrm{f}(\mathrm{x}) \in(-1,1) \neq\) co-domain
so function is one-one but not onto