Correct option is (1) 2184
General term \(={ }^{n} C_{r}\left(7^{1 / 3}\right)^{n-r}\left(11^{1 / 12}\right)^{r}\)
\(={ }^{n} C_{r}(7)^{\frac{n-r}{3}}(11)^{r / 12}\)
For integral terms, r must be multiple of 12
\(\therefore \mathrm{r}=12 \mathrm{k}, \mathrm{k} \in \mathrm{W}\)
Total values of \(\mathrm{r}=183\)
Hence \(\max r=12(182)\)
=2184