Correct option is (3) 186
\( f_1(x)=\log _5\left(18 x-x^2-77\right)\)
\( \therefore \ 18 x-x^2-77>0 \)
\( x^2-18 x+77<0 \)
\( x \in(7,11) \)
\( \alpha=7, \beta=11 \)
\( f_2(x)=\log _{(x-1)}\left(\frac{2 x^2+3 x-2}{x^2-3 x-4}\right)\)
\(x>1, x-1 \neq 1, \frac{2 x^2+3 x-2}{x^2-3 x-4}>0\)
\(x>1, x \neq 2, \frac{(2 x-1)(x+2)}{(x-4)(x+1)}>0\)
\(x>1, x \neq 2\),

\(\therefore \ x \in(4, \infty) \)
\(\therefore \gamma=4 \)
\(\therefore \quad \alpha^2+\beta^2+\gamma^2=49+121+16 \)
= 186