Answer is: \((2 \pi^2)\)
\(I = \int_\limits0^\pi \frac{8xdx}{4\ \cos^2x\ +\ \sin^2x} \) ....(i)
\(I = \int_\limits0^\pi \frac{8(\pi-x)dx}{4\ \cos^2x\ +\ \sin^2x} \) .....(ii)
Adding (i) and (ii)
\(2I = \int_\limits0^\pi \frac{8\pi dx}{4\ \cos^2x\ +\ \sin^2x} \)
