Correct option is: (4) 449
Actual means \(=\mu=\frac{100(40)-50+40}{100}\)
\(\mu=40-\frac{1}{10}=39.9\)
Incorrect variance
\((5.1)^{2}=\frac{\sum x_{i}^{2}}{100}-(\overline{\mathrm{x}})^{2} \)
\( \sum \mathrm{x}_{\mathrm{i}}^{2}=100 \times\left(40^{2}\right)+100(5.1)^{2} \)
\(\sum \mathrm{x}_{\mathrm{i}}^{2}=16 \times 10^{4}+(5.1)^{2} \times 100=162601 \)
\( \sigma^{2}=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}-50^{2}+40^{2}}{100}-(\mu)^{2} \)
\( \sigma^{2}=1617.01-(39.9)^{2}=25 \)
\(\sigma=5 \)
\( 10(\mu+\sigma)=10(39.9+5) \)
\( =10 \times 44.9=449\)