Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
25 views
ago in Mathematics by (44.2k points)

Let A be a \(3 \times 3\) matrix such that \(|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81.\) If \(\mathrm{S}=\left\{\mathrm{n} \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^{2}}{2}}=|A|^{\left(3 n^{2}-5 n-4\right)}\right\}\) then \(\sum\limits_{n \in S}\left|A^{\left(n^{2}+n\right)}\right|\) is equal to

(1) 866

(2) 750

(3) 820

(4) 732 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.6k points)

Correct option is: (4) 732  

\(|\operatorname{adj}(\operatorname{adj})(\operatorname{adj} A)|=81\)

\(\Rightarrow|\operatorname{adj} \mathrm{A}|^{4}=81\)

\(\Rightarrow|\operatorname{adj} A|=3\)

\(\Rightarrow|A|^{2}=3\)

\(\Rightarrow|\mathrm{A}|=\sqrt{3}\)

\(\left(|A|^{4}\right)^{\frac{(\mathrm{n}-1)^{2}}{2}}=|\mathrm{A}|^{3 n^{2}-5 n-4}\)

\(\Rightarrow 2(\mathrm{n}-1)^{2}=3 \mathrm{n}^{2}-5 \mathrm{n}-4\)

\(\Rightarrow 2 \mathrm{n}^{2}-4 \mathrm{n}+2=3 \mathrm{n}^{2}-5 \mathrm{n}-4\)

\(\Rightarrow \mathrm{n}^{2}-\mathrm{n}-6=0\)

\(\Rightarrow(\mathrm{n}-3)(\mathrm{n}+2)=0\)

\(\Rightarrow \mathrm{n}=3,-2\)

\(\sum\limits_{\mathrm{n} \in \mathrm{S}}\left|\mathrm{A}^{\mathrm{n}^{2}+\mathrm{n}}\right|\)

\(=\left|\mathrm{A}^{2}\right|+\left|\mathrm{A}^{12}\right|\)

= 3 + 36 = 3 + 729 = 732  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...