Correct option is: (4) 732
\(|\operatorname{adj}(\operatorname{adj})(\operatorname{adj} A)|=81\)
\(\Rightarrow|\operatorname{adj} \mathrm{A}|^{4}=81\)
\(\Rightarrow|\operatorname{adj} A|=3\)
\(\Rightarrow|A|^{2}=3\)
\(\Rightarrow|\mathrm{A}|=\sqrt{3}\)
\(\left(|A|^{4}\right)^{\frac{(\mathrm{n}-1)^{2}}{2}}=|\mathrm{A}|^{3 n^{2}-5 n-4}\)
\(\Rightarrow 2(\mathrm{n}-1)^{2}=3 \mathrm{n}^{2}-5 \mathrm{n}-4\)
\(\Rightarrow 2 \mathrm{n}^{2}-4 \mathrm{n}+2=3 \mathrm{n}^{2}-5 \mathrm{n}-4\)
\(\Rightarrow \mathrm{n}^{2}-\mathrm{n}-6=0\)
\(\Rightarrow(\mathrm{n}-3)(\mathrm{n}+2)=0\)
\(\Rightarrow \mathrm{n}=3,-2\)
\(\sum\limits_{\mathrm{n} \in \mathrm{S}}\left|\mathrm{A}^{\mathrm{n}^{2}+\mathrm{n}}\right|\)
\(=\left|\mathrm{A}^{2}\right|+\left|\mathrm{A}^{12}\right|\)
= 3 + 36 = 3 + 729 = 732