Answer is: 34
\((1-\mathrm{x})^{20}={ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1} \mathrm{x}+{ }^{20} \mathrm{C}_{2} \mathrm{x}^{2} \ldots . .+{ }^{20} \mathrm{C}_{20} \mathrm{x}^{20}\)
\(\frac{(1-x)^{20}}{x^{2}}=\frac{{ }^{20} C_{0}}{\mathrm{x}^{2}}-\frac{{ }^{20} \mathrm{C}_{1}}{\mathrm{x}}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3} \mathrm{x}+{ }^{20} \mathrm{C}_{4} \mathrm{x}^{2} \ldots.\)
Diff twice and put \(\mathrm{x}=1\)
\(=6-{ }^{20} \mathrm{C}_{1}(2)+\mathrm{A}\)
\(\mathrm{A}=40-6=34\)