Correct option is: (1) \(\frac{5 \sqrt{2}}{3}\)
\(\vec{p}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{q}=3 \hat{i}+4 \hat{j}+5 \hat{k}\)
\(\Rightarrow \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}\)
\(\mathrm{A} \equiv(1,2,3) \mathrm{B} \equiv(\lambda, 4,5)\)
Shortest Distance \(=\left|\frac{\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{q}}|}\right|\)
\(\frac{1}{\sqrt{6}}=\left|\frac{((\lambda-1) \hat{i}+2 \hat{j}+2 \hat{\mathrm{k}}) \cdot(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})}{\sqrt{6}}\right|\)
\(\Rightarrow|-\lambda+1+4-2|=1 \Rightarrow|\lambda-3|=1\)
\(\Rightarrow \lambda=3 \pm 1=4,2\)
Radius of circle passing through points
(0,0), (4, 2) \(\&\) (2, 4)
\(=\frac{\mathrm{abc}}{4 \Delta}=\frac{\sqrt{20} \times \sqrt{20} \times \sqrt{8}}{4 \times \frac{1}{2}\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 4 & 2 \\ 0 & 2 & 4\end{array}\right|}=\frac{20 \times 2 \sqrt{2}}{2 \times 12}\)
\(=\frac{5 \sqrt{2}}{3}\)