Given equation for oscillating magnetic field is,
By = (8 × 10-6) sin [2 × 1011 t + 300 πx]T.
Comparing the given equation with the equation of magnetic field varying sinusoidally with x and t
\(B_y = B_0 \sin\left(\frac{2\pi x}\lambda + \frac{2\pi t}T\right)\)
We get,
\(\frac{2\pi }{\lambda} = 300 \pi \)
\(\therefore \lambda = \frac 2{300} = 0.0067 m\)
and \(B_0 = 8 \times 10^{-6}T\)
(i) Wavelength of the electromagnetic wave, \(\lambda = 0.0067m\)
(ii) Magnitude of electric field is calculated by,
\(E_0 = CB_0\)
\(= 3 \times 10^8 \times 8 \times 10^{-6}\)
\(= 24 \times 10^2\)
\(= 2400 \,Vm^{-1}\)
\(\therefore\) The required expression for the oscillating electric field is,
\(E_z = E_0 \sin \left(\frac{2\pi x}\lambda + \frac{2\pi t}T\right)\)
\(= 2400 \sin (300\pi x + 2 \times 10^{11}t)\,V/m\).