The two regression equations are:
Regression equation of x on y : (x – x̄) = bxy (y – ȳ)
Regression equation of y on x : (y – ȳ) = bxy (x – x̄)
Both variables having common differences, so use step deviation methods.


Here ix common width in x = 100
iy common width in v = 10 and n = 7;

Regression equation of x on y:
x – 400 = 6.05 (y-80) = 6.05y-605 × 80
x = 6.05y – 48.4+ 400
Regression equation of x on y : (x – x̄) = bxy (y – ȳ)
x – 14 = 1(y – 8)
x = y – 8 + 14
∴ x = y + 6
and regression equation y on x is : (y – ȳ) = bxy (x – x̄)
y – 8 = 0.8695 (x – 14)
y = 0.8695x – 12.173 + 8
∴ y = 0.8695x -4.173
Estimation of x when y = 20
∴ From the Regression equation of x on y:
x = 20 + 6 = 26
We know that the coeffiicent of correlation:
