Correct Answer - Option 3 : 0.5
Concept:
The Fourier series for the function f(x) in the interval α < x < α + 2π is given by
\(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos nx + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin nx\)
where
\({a_o} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)dx;\;{a_n} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)\cos nxdx;\;{b_n} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)\sin nxdx\)
When f is an even periodic function of period 2L, then its Fourier series contains only cosine (include possibly, the constant term) terms.
\(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\frac{{\cos n\pi x}}{L}\)
When f is an odd periodic function of period 2L, then its Fourier series contains only sine terms.
\(f\left( x \right) = \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{L}\)
Calculation:
f(x) = cos2(x)
\(f(x) = \frac{{1 + \cos 2x}}{2} = \frac{1}{2} + \frac{{\cos 2x}}{2}\)
On comparing with: \(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\frac{{\cos n\pi x}}{L}\)
a0 = 1
a1 = 0
a2 = 1/2